Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 12(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35203981

RESUMO

Emerging studies have reported that functional brain networks change with increasing age. Graph theory is applied to understand the age-related differences in brain behavior and function, and functional connectivity between the regions is examined using electroencephalography (EEG). The effect of normal aging on functional networks and inter-regional synchronization during the working memory (WM) state is not well known. In this study, we applied graph theory to investigate the effect of aging on network topology in a resting state and during performing a visual WM task to classify aging EEG signals. We recorded EEGs from 20 healthy middle-aged and 20 healthy elderly subjects with their eyes open, eyes closed, and during a visual WM task. EEG signals were used to construct the functional network; nodes are represented by EEG electrodes; and edges denote the functional connectivity. Graph theory matrices including global efficiency, local efficiency, clustering coefficient, characteristic path length, node strength, node betweenness centrality, and assortativity were calculated to analyze the networks. We applied the three classifiers of K-nearest neighbor (KNN), a support vector machine (SVM), and random forest (RF) to classify both groups. The analyses showed the significantly reduced network topology features in the elderly group. Local efficiency, global efficiency, and clustering coefficient were significantly lower in the elderly group with the eyes-open, eyes-closed, and visual WM task states. KNN achieved its highest accuracy of 98.89% during the visual WM task and depicted better classification performance than other classifiers. Our analysis of functional network connectivity and topological characteristics can be used as an appropriate technique to explore normal age-related changes in the human brain.

2.
Neurobiol Aging ; 96: 87-103, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950782

RESUMO

Age-related hearing loss is a very common sensory disability, affecting one in three older adults. Establishing a link between anatomical, physiological, and behavioral markers of presbycusis in a mouse model can improve the understanding of this disorder in humans. We measured age-related hearing loss for a variety of acoustic signals in quiet and noisy environments using an operant conditioning procedure and investigated the status of peripheral structures in CBA/CaJ mice. Mice showed the greatest degree of hearing loss in the last third of their lifespan, with higher thresholds in noisy than in quiet conditions. Changes in auditory brainstem response thresholds and waveform morphology preceded behavioral hearing loss onset. Loss of hair cells, auditory nerve fibers, and signs of stria vascularis degeneration were observed in old mice. The present work underscores the difficulty in ascribing the primary cause of age-related hearing loss to any particular type of cellular degeneration. Revealing these complex structure-function relationships is critical for establishing successful intervention strategies to restore hearing or prevent presbycusis.


Assuntos
Envelhecimento , Cóclea/patologia , Cóclea/fisiopatologia , Células Ciliadas Auditivas/patologia , Perda Auditiva/patologia , Degeneração Neural/patologia , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas/fisiologia , Perda Auditiva/etiologia , Perda Auditiva/fisiopatologia , Perda Auditiva/psicologia , Camundongos Endogâmicos CBA , Degeneração Neural/etiologia , Degeneração Neural/fisiopatologia , Psicoacústica
3.
Elife ; 92020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31975688

RESUMO

Lateral olivocochlear (LOC) efferent neurons modulate auditory nerve fiber (ANF) activity using a large repertoire of neurotransmitters, including dopamine (DA) and acetylcholine (ACh). Little is known about how individual neurotransmitter systems are differentially utilized in response to the ever-changing acoustic environment. Here we present quantitative evidence in rodents that the dopaminergic LOC input to ANFs is dynamically regulated according to the animal's recent acoustic experience. Sound exposure upregulates tyrosine hydroxylase, an enzyme responsible for dopamine synthesis, in cholinergic LOC intrinsic neurons, suggesting that individual LOC neurons might at times co-release ACh and DA. We further demonstrate that dopamine down-regulates ANF firing rates by reducing both the hair cell release rate and the size of synaptic events. Collectively, our results suggest that LOC intrinsic neurons can undergo on-demand neurotransmitter re-specification to re-calibrate ANF activity, adjust the gain at hair cell/ANF synapses, and possibly to protect these synapses from noise damage.


Every day, we hear sounds that might be alarming, distracting, intriguing or calming ­ or simply just too loud. Our hearing system responds to these acoustic changes by fine-tuning sounds before they enter the brain. For example, if a noise is too loud, the volume can be turned down by dampening the signals nerve fibers in the ear send to the brain. This is thought to reduce the damage loud sounds can cause to the sensory organ inside the ear. A set of nerve cells located at the base of the brain called the lateral olivocochlear (LOC) neurons coordinate this adjustment to different volumes and sounds. When these neurons receive information on external sounds, they signal back to the hearing organs and adjust the activity of auditory nerve fibers that communicate this information to the brain. LOC neurons use a diverse range of molecules to modify the activity of auditory nerve fibers, including the 'feel-good' neurotransmitter dopamine. But it is unclear what role dopamine plays in this auditory feedback loop. To find out, Wu et al. studied the hearing system of mice that had been exposed to different levels of sound. This involved imaging LOC neurons stained with a marker for dopamine and measuring the activity of nerve fibers in the inner ear. The experiments showed that LOC neurons in mice that had recently been exposed to sound were covered in an enzyme that is essential for making dopamine. The louder the sound, the more of this enzyme was present, suggesting that the amount of dopamine released depends on the volume of the sound. LOC neurons release another neurotransmitter called acetylcholine, which stimulates activity in auditory nerve fibers. Wu et al. found that dopamine and acetylcholine are released from the same group of LOC neurons. However, dopamine had the opposite effect to acetylcholine and reduced nerve activity. These findings suggest that by controlling the mixture of neurotransmitters released, LOC neurons are able to fine-tune the activity of auditory nerve fibers in response to acoustic changes. This work provides a new insight into how our hearing system is able to perceive and relay changes in the sound environment. A better understanding of this auditory feedback loop could influence the design of implant devices for people with impaired hearing.


Assuntos
Neurônios Colinérgicos/metabolismo , Nervo Coclear/metabolismo , Dopamina/biossíntese , Neurônios Eferentes/metabolismo , Som , Animais , Células Ciliadas Auditivas Internas/metabolismo , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...